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Abstract

Changing workplace demands are driving managers to collect more information
and provide more feedback about worker performance than ever before. De-
spite obvious benefits concerns persist about how all this information – much
of which is non-contractible and must pass through discretionary feedback –
might distort incentives. I highlight a better monitoring/worse outcome chan-
nel that speaks to these concerns. Some improvements to the informativeness
of monitoring tempt managers to provide excessive negative feedback leading to
overpunishment. Workers then refuse to accept contracts that do not severely
constrain the size of the punishment threat. Without a serious punishment
threat, effort and surplus decline.

JEL Codes: C73, D86, J41, M5
Keywords: incentive power, statistical power, monitoring, privacy, management
style, information design, optimal contracts, principal agent, moral hazard

1I thank Dilip Abreu, Davide Cianciaruso, Tommaso Denti, Brett Green (discussant), David
Pearce, Bill Sandholm, Eddie Schlee and seminar participants at UC Boulder, Cornell, University of
Rochester, University of Minnesota, University of Washington at St Louis, INSEAD, HEC, Univer-
sity of Maryland, UC Riverside, University of Wisconsin, Financial Research Association Conference,
Richmond Fed, University of Kentucky, Michigan State, Kansas Workshop on Economic Theory.



1 Introduction

A performance management revolution is reshaping the nature of monitoring in the
workplace, emphasizing more information and more feedback. In just the last few
years hundreds of companies ranging from small private firms to multinationals, non-
profits and NGOs have introduced continuous performance management (CPM) prac-
tices as a complement to and sometimes as a replacement for the traditional end-of-
year appraisal.2 At the same time, technological advances such as those in biometrics
have vastly increased the quantity of worker data that can be collected at any mo-
ment in time.3 Despite obvious benefits of better monitoring (e.g. better worker
development, quicker identification of problem areas, improved coordination amongst
team members) there is widespread uncertainty about how all this extra information
will affect the provision of incentives since much of it is not directly contractible and
ends up being filtered through a manager’s discretionary feedback. Given the rapidly
expanding scope of monitoring, understanding if, when, and how monitoring should
be limited is becoming increasingly important.

That monitoring should be limited at all may be surprising given that a funda-
mental result in principal-agent theory is about how better monitoring generically
leads to a better outcome (Holmstrom, 1979). In light of this result, rationales for
why reducing the informativeness of monitoring is beneficial have focused on introduc-
ing additional concerns into the baseline principal-agent model that can antagonize
the otherwise positive relationship between principal monitoring and agent effort.
One well-known example is career concerns.4 Other possibilities include the fear of
corruption or that “familiarity breeds contempt.”5

The point I wish to make about the potential benefits of reducing the amount of
information generated by monitoring is in some ways more universal. Rather than
adding another dimension to the baseline model, I start by observing that Holm-

2CPM practices emphasize providing frequent feedback, often in ratingless form and sometimes
drawn from multiple sources (Ledford, Benson, and Lawler, 2016). Numerous recent articles in Har-
vard Business Review – Buckingham and Goodall (2015), Cappelli and Tavis (2016), Wall Street
Journal – Weber (2016), Hoffman (2017), and Forbes – Burkus (2016), Caprino (2016) have doc-
umented the shift toward CPM at companies across a broad range of industries, including Google,
Deloitte, Patagonia, Adobe, General Electric, Goldman Sachs, Kimberly-Clark, and Accenture. John
Doerr, venture capitalist at Kleiner Perkins, has also written about CPM. See Doerr (2018).

3While much attention has been paid to the kind of biometric technology used at Amazon ware-
houses that monitors discrete tasks, sophisticated monitoring technologies featuring machine learning
and artificial intelligence are increasingly being deployed to evaluate performance in less structured
environments. For example, Humanyze tracks vocal data including tone, speed, volume, and fre-
quency. Algorithmic software then processes that data to help clients interpret office communication
patterns and their impact on productivity.

4The canonical moral hazard model with career concerns is Holmstrom (1999). Crémer (1995),
Dewatripont, Jewitt and Tirole (1999) and Prat (2005) explore ways in which better monitoring can
lead to worse outcomes in various moral hazard models with career concerns.

5Outside the corporate world, the anti-fraternization rules between enlisted personnel and officers
tasked with monitoring them are often justified based on these concerns.
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strom’s better monitoring/better outcome result assumes monitoring generates purely
contractible information but for many agents monitoring generates information that
is, at least partially, not contractible – think about the opinions a manager forms
in her mind about how a worker is doing.6 When information is not directly con-
tractible, incentives must depend on the principal’s reports of what she has observed.
This means even if the principal and agent sign a contract, the principal still has
quite a bit of discretion in deciding how much to discipline the agent. In this discre-
tionary setting, I show some improvements to the information content of monitoring
tempt the principal to be too tough by giving her the ability to induce a lot of effort
from the agent but only if she makes heavy use of the “stick.” Anticipating such a
tough principal, the agent responds by refusing to accept any contract that gives the
principal a big stick. The end result is that either the agent quits or the principal
is forced to offer a new weaker contract with a stick so small that effort and surplus
decline despite the better information. Conversely, reducing the amount of informa-
tion generated by monitoring can be beneficial by reducing how tough the principal
is tempted to be. A consequence of this result is that appraising an agent’s overall
performance every once in a while can dominate closely monitoring his day-to-day
performance every single day.

Taken together these results highlight a better monitoring/worse outcome channel
relevant across a broad range of principal-agent relationships where the principal has
discretion in deciding how information generated by monitoring is used to provide
incentives for the agent. In the coming sections I will show how the presence of such
a channel means that when it comes to the design of monitoring technologies care
should be taken to avoid generating information that is at once noisy but sensitive to
effort (Section 4.2), that there is value to censoring raw performance data (Section
4.3), and that maintaining formal, periodic performance reviews can – if done in
the right way – be beneficial even when organizational concerns beyond incentives
necessitate a more frequent performance management component (Section 5.3).

The idea that more information can lead to a worse contracting outcome has also
been pointed out in the insurance market setting: Limiting what counterparties know
about hidden states can make everyone better off ex-ante.7 My work can be viewed
as exploring an analogous phenomenon for hidden actions.8

6Even if monitoring is in the form of a data generating technology, in practice that data is often
still not contractible especially if the worker is not performing simple, repetitive tasks. The data
is typically proprietary and observed only by the firm. It may be interpretable only in conjunction
with other soft information. Directly conditioning outcomes on the data may be impractical if the
dataset is huge, susceptible to manipulation, or evolving over time in response to changing market
conditions that are hard to predict ex-ante. Worker privacy concerns also impede contractibility.
Instead, what often happens is the manager uses the data to help make an unverifiable judgement
call about worker performance. For example, one client used Humanyze data to help determine
which teams seemed more crucial and which ones less so when deciding how to reposition personnel
ahead of a major growth opportunity. (A Major Oil and Gas Company Faces Expansion, n.d.)

7See, for example, Hirshleifer (1971), Wilson (1975), and Schlee (2001).
8Gjesdal (1982) shows that when utility is nonseparable and contracts are deterministic better
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2 A Motivating Example

A principal P (she) contracts an agent A (he) to work on a project. A exerts hidden
effort a ∈ [0, 1) with cost h(a). Assume h is convex and differentiable with h′(0) = 0
and h′(a) → ∞ as a → 1. a determines the distribution of a signal X ∈ {xB, xG}
where P(X = xB | a) = (1− a)q for some constant q ∈ (0, 1). xB is a “bad” signal –
the higher is a the less likely it occurs. Conversely, xG is a “good” signal.

X is privately observed by P . However, nothing would change if instead X were
mutually observable but unverifiable and A does not make verifiable reports about
X that a contract could depend on. A’s lack of reporting could be due to P ’s ability
to falsify A’s reports or perhaps it is too costly for A to take P to court if P violates
a contract’s dependence on A’s reports. Given X, P receives a utility with u(xG) >
u(xB). Define u(a) := Eau(X).

A contract game consists of an upfront payment w ∈ R and a punishment p ≥ 0
that P can inflict on A after privately observing X. Punishing A does not affect P ’s
utility but subtracts p from A’s utility. P ’s punishment strategy is a mapping r from
X to a possibly random decision to punish (r = 1) or not punish (r = 0). Given
contract game (w, p), effort a, and punishment strategy r, P ’s payoff is u(a)−w. A’s
payoff is w − h(a)− Earp.

9

I assume the following contract negotiation protocol is in place: P offers a contract
game and recommends an incentive-compatible way to play the game – that is, an
equilibrium. A chooses whether or not to accept P ’s contract game offer. If he accepts
he obeys P ’s recommendation about play. If he does not accept both parties exercise
outside options normalized to 0.

Does it matter when P makes her recommendation about play? In theory, she
can recommend an equilibrium at the time she offers a contract game and then, if
A accepts the offer, recommend a different one. The ability to recommend again
matters because after acceptance A’s ex-ante participation constraint is no longer a
concern. I assume if P does change her recommendation after A accepts then A obeys
the latter recommendation. Equivalently, P only recommends an equilibrium after A
accepts the contract game offer. For more on this contract negotiation protocol see
the discussion below titled Why Does the Principal Get to Dictate the Equilibrium?

Let us now find the optimal contract game (w∗X , p
∗
X) under monitoring technology

X. Given an offer (w, p), if A accepts P will subsequently recommend the equilibrium
(a, r) with maximal a. Why? After A accepts, w is fixed and he can no longer exercise
his outside option. This makes P ’s payoff u(a) − w purely an increasing function of

monitoring in the sense of Blackwell (1950) can lead to a less efficient outcome. Essentially garbling
allows deterministic contracts to mimic random contracts which can be beneficial under nonseparable
utility. If contracts are allowed to be random better monitoring/better outcome is restored.

9My model is in the spirit of the subjective evaluation models found in MacLeod (2003) and
Fuchs (2007). Those papers show that since monitoring is private incentives are provided through
surplus destruction not performance sensitive pay. Thus, it is without loss of generality for there to
be only an upfront payment.
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a. The unique equilibrium with maximal a involves P punishing A if and only if the
bad signal xB is realized. When making his accept/reject decision, A anticipates that
if he accepts P ’s final recommended equilibrium will be the one just described.

Taking the equilibrium as given, p∗X is set to maximize surplus:

p∗X ∈ arg max
p≥0

u(h′−1(qp))− h(h′−1(qp))− (1− h′−1(qp))qp.

Let S∗X denote the maximal surplus. If S∗X ≥ 0 an optimal contract game satisfying
ex-ante participation constraints exists. A standard first-order condition now pins
down A’s effort as a∗X = h′−1(qp∗X). A’s ex-ante participation constraint then pins
down w∗X = h(a∗X) + (1− a∗X)qp∗X .

Notice under X the optimal contract game and the way A and P play that game
would have been the same even if P could not change her recommendation about
play after A accepts her contract game offer. In general, however, the ability of P to
change her recommendation after A accepts negatively impacts contracting:

Consider the following better monitoring technology X ′ derived from X by splitting
xG into two signals xb and xg where the probability of xb decreases linearly from 1−q
to 1− q − ε as a function of a over [0, 1). Here think of ε as being vanishingly small.
Notice xg is a good signal while xb is an almost completely uninformative bad signal.
Utility remains unchanged: u(xb) = u(xg) = u(xG).

Let us now find the optimal contract game (w∗X′ , p
∗
X′) under the better monitoring

technology X ′. Given an offer (w, p), A again rationally anticipates being punished
whenever a bad signal is realized – except this time a bad signal is xB or xb. Since
ε is vanishingly small, the effort induced by a punishment of size p under X ′ is
arbitrarily close to that under X. Thus the argmax expression used to find an optimal
punishment is approximately the one used before plus a −(1− q)p term:

arg max
p≥0

u(h′−1(qp))− h(h′−1(qp))− (1− h′−1(qp))qp− (1− q)p (1)

This implies S∗X′ < S∗X . If S∗X′ < 0 then both parties quit the relationship. Oth-
erwise, an optimal contract game exists satisfying ex-ante participation constraints
exists. Either way better monitoring has led to less surplus and a lower payoff for P .
Moreover, if optimal punishments under X and X ′ are unique then optimal punish-
ment and effort both decline: p∗X′ < p∗X and a∗X′ < a∗X .

Why can’t P just ignore the extra information contained in X ′, rendering better
monitoring/worse outcome impossible? Because using the extra information of X ′

allows more effort to be induced, and maximizing effort is all P cares about after
A accepts the contract game offer. But that extra effort comes at a great cost to
efficiency because P now punishes the almost completely uninformative xb in addition
to xB. Essentially P is being too tough on A. Allowing contract games to feature
both a big and a small punishment – so that the punishment can fit the crime – would
not help: After A accepts such a contract game offer, P will recommend a play that
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has A suffering the big punishment for both xb and xB. Ex-ante A anticipates that P
cannot help but be too tough under the better monitoring technology X ′. To prevent
A from quitting, P is forced to offer a contract game with a small punishment, which
hinders incentive provision and leads to a worse outcome.10

The motivating example suggests the following channel through which better mon-
itoring can negatively affect the provision of incentives: When an improvement to
monitoring yields lots of low quality bad signals the principal wants to use the stick
too often. The agent then refuses to accept a contract game that gives the principal a
big stick. Without a big stick to discipline the agent effort and surplus decline.

Is Better Monitoring/Worse Outcome Fragile?

In the motivating example P cannot stick to a recommendation about play that
becomes even a tiny bit suboptimal after A accepts the contract game offer: Under
X ′, P can induce slightly more effort and increase her utility a tiny bit after A accepts
than under X by punishing the almost completely uninformative signal xb. P ’s lack
of commitment power then implies xb will be punished, leading to a worse contracting
outcome ex-ante. With ε-commitment power P could recommend punishing only xB
before A accepts a contract game offer and stick to that recommendation after A
accepts. The worse outcome result then goes away.

This begs the question: Does better monitoring/worse outcome survive in general
when P has ε-commitment power? Yes.

I will show that in general there are ways to improve monitoring that allow P
to induce significantly higher effort but require an even more significant amount
of punishment. Having ε-commitment power allows P to resist the temptation of
inducing slightly higher effort but not significantly higher effort. By assumption,
inducing significantly higher effort involves being too tough. Now the same logic as
before leads to a worse outcome.

In the motivating example, P also lacks commitment power after observing X:
The definition of a contract game only allows for an upfront payment because even
if P were provided a menu of payments to choose from after observing X, she would
only ever choose the minimum payment. With ε-commitment, P could commit to
mappings from X to payments in the menu within ε of the minimum, allowing for
a modicum of pay-to-performance sensitivity. Of course, this alternate source of
effort incentives is not enough to render the better monitoring/worse outcome channel
obsolete if ε is sufficiently small.

On the other hand, as ε tends to infinity, P will abandon the punishment tool
p in favor of performance sensitive pay, which does not involve surplus destruction.
The model becomes isomorphic to a standard moral hazard model with contractible

10Alternatively, P could keep the punishment size the same and just compensate A with a bigger
upfront payment. However (1) implies this is never optimal – reducing punishment increases surplus
which P can then capture ex-ante by lowering the upfront pay.
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information and Holmstrom (1979) applies: Better monitoring not only never leads
to a worse outcome but, in fact, generically leads to a strictly better outcome if A
is risk-averse. In the motivating example both P and A are risk-neutral but clearly
introducing risk-aversion or limited liability will not shut the better monitoring/worse
outcome channel.

In the motivating example the information generated by monitoring is purely
non-contractible but the better monitoring/worse outcome channel can remain open
even if information contains a contractible component. Of course, as the contractible
component becomes increasingly informative, the channel will weaken.

In the motivating example X has the property that each signal realization can
be characterized as “good” or “bad” because its occurrence probability is a strictly
monotonic function of effort. While in general signals need not be monotonic in
this way, it is not clear that non-monotonicity would negatively interfere with the
better monitoring/worse outcome channel. That being said, assuming monotonic
signals simplifies the analysis of optimal contracting since it implies a very simple
punishment strategy for maximizing effort. Throughout the rest of paper I continue
to work with monotonic signals or signals that satisfy the monotone-likelihood-ratio-
property (MLRP), another class of signals that implies a similarly simple punishment
strategy for maximizing effort.

Why Does the Principal Get to Dictate the Equilibrium?

A’s effort is hidden and P ’s action depends on non-contractible information. Thus,
neither player’s strategy can be court-enforced. Instead, the players must somehow
settle outside of the courts on a way to play the contract game after it is accepted by
A.

The contract negotiation protocol assumes that after A accepts a contract game
offer, the players always settle on playing P ’s most preferred equilibrium. This pro-
tocol is important for better monitoring/worse outcome and I justify it by appealing
to the credible threats idea of Tranæs (1998) and Zhu (2018) for selecting equilibria.
See Dewatripont (1987) and Barron and Guo (2019) for additional applications of the
idea.

Here is the gist of the credible threats idea: Consider a two player perfect in-
formation game of depth two with the property that player 2 is indifferent between
all her actions at each of her decision nodes. Ex ante, player 2 ought to be able to
(and will want to) commit to a strategy in order to induce player 1 to take an action
most preferred by player 2. Tranaes (1998) generalizes this idea to select subgame-
perfect equilibria in all finite extensive-form games. Zhu (2018) extends this idea to
show that in repeated moral hazard models with private monitoring a unique (up to
continuation payoff process) sequential equilibrium is selected in every contract game.

In the motivating example applying the credible threats idea leads to the equilib-
rium selected by the contract negotiation protocol: Notice P – player 2 – is indifferent
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between her two actions, punish and do not punish. The credible threats idea then
says that, before the contract game is played, P can and will credibly commit to a
punishment strategy that induces A – player 1 – to take the action most preferred by
P . P ’s most preferred action is the highest effort A can be induced to exert.

In Tranæs (1998) and Zhu (2018), the credible threats idea only has bite in the
knife edge case when a player is indifferent between actions. In the motivating ex-
ample, the knife edge case is ensured because punishing A does not affect P ’s utility.
But what if punish were, say, ε more costly to P than do not punish? As long as P
has ε-commitment power, the credible threats idea still has bite under the contract
negotiation protocol and the better monitoring/worse outcome channel remains open.

Looking Ahead

While it should be clear now that the better monitoring/worse outcome channel
applies quite generally, a few important questions remain:

1. Are there ways to improve monitoring that are more natural than splitting a
signal realization and still generate the better monitoring/worse outcome result?

2. How much worse can the outcome be when monitoring is improved?

3. What kinds of improvements to monitoring lead to a worse outcome?

4. Can the better monitoring/worse outcome channel provide practical guidance
for how to beneficially limit monitoring?

In the remainder of the paper I address these questions. I begin by moving to
a dynamic setting where the abstract utility destroying punishment tool p of the
motivating example is replaced with the ability to terminate the relationship. This
allows the scope for punishing the agent at any date to be endogenously bounded by
the forgone surplus of the relationship going forward. I then:

1. Look at the universe of binary-valued monitoring technologies in the continuous-
time limit and consider a situation where the principal begins with a single
binary-valued technology X and then improves it by acquiring an additional
conditionally independent binary-valued technology Y .

– Acquiring an extra signal of effort represents a more intuitive way to im-
prove monitoring than splitting a realization of a single signal into two
signal realizations. The choice to restrict attention to all binary-valued
monitoring technologies in the continuous-time limit represents a compro-
mise between computational simplicity and generality.

2. Demonstrate that better monitoring can lead to a significantly worse outcome.
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– In the leading example of the analysis I show that improving a bad news
Poisson monitoring technology by bringing in an additional Brownian com-
ponent causes the optimal contract game to collapse into a trivial arrange-
ment that induces zero effort at all times and never terminates the agent.

3. Characterize the counterproductive improvements Y as those that are, relative
to X, sufficiently strong in incentive power but sufficiently weak in statistical
power.

– Greater incentive power means being able to use a smaller punishment
threat to induce any target effort level. Statistical power, to be defined
later, is a measure of informativeness based on viewing the information
generated by monitoring as a hypothesis test.

4. Show, as an application, that in a canonical setting in which the agent’s efforts
affect the drift of a Brownian process and the principal monitors by sampling
that process, restricting the principal to sample every once in a while signifi-
cantly improves the outcome.

– In contrast, letting the principal sample continuously but only allowing her
to view the results of those samplings every once in a while (i.e. batching)
is strictly counterproductive. This contrasts with well-known results in the
repeated games literature that highlight the benefits of batching. I then
show how these findings shed light on ways to appropriately maintain a
periodic performance appraisal for incentive provision purposes when other
organizational concerns necessitate a continuous performance management
component.

3 The Dynamic Model

The contracting horizon runs from date 0 to date T . Each date is of length ∆ > 0
and dates are denoted by t = 0,∆, 2∆, . . . T . Assume ∆ divides T . The discount
factor is e−r∆ for some r > 0.

At the beginning of each date t < T that A is still employed, P pays A some
amount wt∆ ∈ R. Next, A chooses effort at ∈ [0, 1). at costs h(at)∆ with h(0) =
h′(0) = 0, h′′ > 0, and limat→1 h(at) =∞. After A exerts effort P observes a private
signal Xt smoothly controlled by at. Again, it is equivalent to assume Xt is only non-
contractible but A cannot make reports about Xt. I assume Xt is strictly monotone
in the sense that there exist two disjoint sets Good and Bad such that Im(Xt) =
Good t Bad and for any x ∈ Good (Bad), P(Xt = x | at) is strictly increasing
(decreasing) in at. Xt determines P ’s date t utility. Given at, I assume P ’s date t
expected utility can be written as u(at)∆ where u(·) is a strictly increasing, weakly
concave function and u(0) > 0. Next, P reports a public message mt selected from
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a contractually pre-specified finite set of messages Mt; then, a public randomizing
device is realized; finally, A is possibly terminated at the beginning of date t + ∆.
If A is terminated A and P exercise outside options worth 0 at date t + ∆ and P
makes a final payment wt+∆ to A. Otherwise, the same sequence of events as I just
described is repeated for date t+ ∆. A is terminated at the beginning of date T .

A contract game (M, w, τ) specifies a message book M, a payment plan w, and
a termination clause τ . Let ht denote the public history of messages and public
randomizing devices up through the end of date t. M consists of an ht−∆-dependent
finite message space Mt for each t. τ is a stopping time where τ = t is measurable
with respect to ht−∆. w consists of an ht−∆-measurable payment wt∆ (if τ(ht−∆) > t)
or wt (if τ(ht−∆) = t) to A for each t.

Given (M, w, τ), an assessment (a,m) consists of an effort strategy a for A, a
report strategy m for P , and a system of beliefs. a consists of an effort choice at
for each t depending on ht−∆ and A’s private history HA

t−∆ of prior effort choices. m
consists of a message choice mt for each t depending on ht−∆ and P ’s private history
HP
t of observations {Xs}s≤t. The system of beliefs consists of a belief about HP

t−∆ at
each decision node (HA

t−∆, ht−∆) of A, and a belief about HA
t at each decision node

(HP
t , ht−∆) of P .
A contract (M, w, τ, a,m) is a contract game plus an assessment. Given a con-

tract, the date t continuation payoffs of A and P at the beginning of date t are

Wt(H
A
t−∆, ht−∆) = EA

t

[ ∑
t≤s<τ

e−r(s−t)(ws − h(as))∆ + e−r(τ−t)wτ

]
,

Vt(H
P
t−∆, ht−∆) = EP

t

[ ∑
t≤s<τ

e−r(s−t)(−ws + u(as))∆− e−r(τ−t)wτ

]
.

3.1 The Optimal Contract

The optimal contracting problem is to find an incentive-compatible contract that
maximizes V0 subject to the agent’s ex-ante participation constraint W0 ≥ 0 and
an interim participation constraint Wt + Vt ≥ 0 for all t. Intuitively, if the interim
participation constraint were violated then both parties could be made strictly better
off by separating under some severance pay.11

Incentive-compatibility requires that the principal’s report strategy and the agent’s
effort strategy plus a system of beliefs comprise a sequential equilibrium. As we saw
in the motivating example, the credible threats idea of Tranaes (1998) can be used to
justify the assumption that P selects the equilibrium. In general, P ’s most preferred
equilibrium changes over time. In the one shot setting this just means that P ’s most
preferred equilibrium after A accepts the contract game offer is played. In the present

11It will be shown that for incentive compatible contracts Wt and Vt are both public, so violations
of the interim participation constraint are common knowledge.
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setting where P and A interact repeatedly, it is not a priori clear what equilibrium will
be played. Zhu (2018) addresses this issue and argues that any reasonable applica-
tion of the credible threats idea will inevitably lead to the same sequential equilibrium
which at the end of each date t involves P reporting the message that leads to the
highest (lowest) possible Wt+∆ subject to maximizing Vt+∆ if and only if Xt ∈ Good
(∈ Bad).12 This characterization of P ’s report strategy in any incentive-compatible
contract then implies:

Theorem 1. As T → ∞, the optimal contract converges to a stationary efficiency
wage contract with the following structure:

• Mt = {pass, fail}.

• mt = fail iff Xt ∈ Bad.

• w consists of a pair of constants wsalary∆, wseverance.

• If mt = pass then A is retained for date t+ ∆ and paid wsalary∆.

• If mt = fail then A is terminated at date t+ ∆ with probability p∗.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid wseverance.

Proof. See appendix.

The optimal contract for finite T has the same structure except wsalary, wseverance,
and p∗ will, in general, all depend on t. For computational simplicity, I will focus on
the infinite horizon limit from now on.

The optimal contract is a wage contract just like what was assumed in the mo-
tivating example.13 At each date t, conditional on still being employed, the agent is
paid the same amount regardless of performance history. There is a good reason for
this. Suppose instead there was an additional message that leads to A receiving a big
bonus which P is supposed to report if she observes some really positive information
about A’s performance (i.e. a Good signal whose probability increases sharply as a
increases). The problem with this altered contract is that its strategy profile would
not satisfy any reasonable notion of incentive-compatibility: Because monitoring is
private, P can always claim she didn’t see the really positive information even if she

12That such Wt+∆ are well-defined and do not depend on A’s beliefs about P ’s private history
depends on applications of the credible threats idea at dates > t. The use of backwards induction
logic to refine sequential equilibria is why the model has a finite horizon.

13There are two payment levels here whereas in the motivating example there was only one. The
difference arises only because I assumed in the motivating example that punishing A does not affect
P ’s utility. In the current model, failing A changes P ’s continuation payoff. The difference between
wsalary and wseverance exists purely to make P indifferent ex-post between reporting pass and fail.
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did and thereby avoid having to pay A the big bonus. In general, P must be indiffer-
ent between reporting different messages that occur on the equilibrium path, which
means in the optimal contract

Vt+∆(pass) = Vt+∆(fail).

By definition, Vt+∆(fail) = −p∗wseverance + (1 − p∗)Vt+∆(pass). Let S∗ denote the
Pareto-optimal surplus. By self-similarity and the fact that A’s ex-ante participation
constraint binds, Vt+∆(pass) = V0 = S∗. Thus,

wseverance = −S∗.

Negative severance pay is just an artifact of how I normalized outside options.
Next, consider A’s effort incentives. In my model, termination destroys surplus

– by assumption, even zero effort generates positive surplus. Since P is completely
insured against any surplus destruction, this means it is A who bears the cost of
inefficient termination,

Wt+∆(pass)−Wt+∆(fail) = p∗S∗.

Consequently, A is willing to put in effort to reduce the chances of getting failed and
terminated. The first-order condition that pins down A’s effort level each date is,

h′(a∗)∆ = −dP(Xt ∈ Bad | at)
dat

|at=a∗p∗S∗. (2)

If there are multiple efforts that maximize A’s utility, a∗ is the highest one as this is
the most preferred by P .

p∗ and S∗ are simultaneously determined by the following system of equations,

p∗ = arg max
p∈[0,1]

(u(a∗(pS∗))− h(a∗(pS∗)))∆ + e−r∆(1−P(Bad | a∗(pS∗))p)S∗

S∗ = (u(a∗(p∗S∗))− h(a∗(p∗S∗)))∆ + e−r∆(1−P(Bad | a∗(p∗S∗))p∗)S∗.

The solution can be recursively computed by setting S∗0 = u(0)∆ on the RHS of the
two equations and then computing p∗1 and S∗1 and so on and so forth. S∗i is strictly
increasing in i = 0, 1, 2 . . . and S∗ = S∗∞. Finally, wsalary is determined by A’s binding
ex-ante participation constraint W0 = 0,

wsalary = h(a∗(p∗S∗)) +
e−r∆

∆
P(Bad | a∗(p∗S∗))p∗S∗.

Notice the sequence of computations that lead to the full characterization of the
optimal dynamic contract mirrors the one in the motivating example. Not surprisingly
then, a signal splitting construction like the one considered in the motivating example
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can generate a better monitoring/worse outcome result here as well. However, in the
sections below I explore the better monitoring/worse outcome channel at a deeper
level by addressing the issues listed at the end of Section 2.

4 Better Monitoring Worse Outcome

At each date t, P punishes A if and only if she observes a Bad signal at that date.
This simple intuitive report strategy is a consequence of P wanting to maximize effort
incentives at all times. But is this the efficient thing to do? Put another way, if P
were a benevolent social planner instead of a utility maximizer would she still report
in this way or something close given the contract game? The answer – it depends. If
the monitoring technology generates “high quality” Bad signals that are suggestive
of A not putting in the level of effort he is supposed to then intuitively the answer is
yes (I will be precise about what “high quality” means shortly). Where this strategy
becomes inefficient is when the monitoring technology generates mostly “low quality”
Bad signals that are not very suggestive of A shirking. In this case, one would like
to see P be a little more fair to A and fail him only if he generates a high quality
Bad signal, or at least wait until he has generated low quality Bad signals across
multiple dates. But P will not be fair: Sure, at the time of contracting, P would
like to commit to be fair in the future – being fair increases surplus which P can
then extract by offering a contract game with lower pay. The problem is, once A
has accepted the contract game, P cannot help but change her report strategy to
an overly tough one that maximizes effort incentives by punishing A any time any
kind of a Bad signal occurs. Since changing a report strategy amounts to changing
a function over non-contractible information, being too tough is not something that
can be contracted away.

Now at the time of contracting A understands that in the future, if the monitoring
technology is going to frequently generate low quality Bad signals, P will likely be
too tough. To counteract this, the contracting parties then preemptively agree to an
optimal contract that reduces the pain of punishment. That means setting p∗ to be
a low value. And in some cases when the typical Bad signal is very low quality it
might even be optimal to lower p∗ all the way to zero. Of course, once p∗ hits zero
there is no punishment threat and A will exert zero effort.

Is it possible to take a monitoring technology that generates mostly high qual-
ity Bad signals and improve it to the point where it generates lots of low quality
Bad signals? The motivating example suggests some dilution in the quality of Bad
signals is possible. I now show quality can be strongly diluted, to the point of trigger-
ing a complete collapse of the optimal contract. Moreover, such counterproductive
improvements to monitoring need not involve signal splitting as in the motivating
example and can instead take the more intuitive form of letting the principal observe
an additional conditionally independent signal of effort. Of course not all additional
signals are harmful. So lastly I classify the harmful additional signals as those that
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are, relative to the signal already in place, sufficiently strong in incentive power but
sufficiently weak in statistical power. Before establishing the result at a reasonably
general level, let us first work through an explicit example that demonstrates the
basic idea.

4.1 Bad News Poisson and Brownian Monitoring

In this example I begin with a bad news Poisson monitoring technology where the
Poisson event is the Bad signal. I show that this Bad signal is high quality in the
sense that the ex-post efficiency loss from punishing A nontrivially whenever this
signal occurs is more than outweighed by the ex-ante efficiency gain from the effort
such a punishment induces. Consequently the optimal contract induces positive effort
– depending on how the intensity of the Poisson process and the benefit function u(·)
are parameterized the effort induced by the optimal contract can be made to be
arbitrarily high (i.e. close to 1). I then improve the monitoring technology by letting
P observe an additional, conditionally independent Brownian signal of effort where
the drift is controlled by A’s effort (actually a random walk where effort controls the
degree of asymmetry). I show that the improved monitoring technology, where signals
are vectors consisting of a Poisson and a Brownian component, generates a typical
Bad vector that is very low quality. Consequently, the optimal contract collapses and
P becomes worse off.

Under bad news Poisson monitoring, each date the incremental information Xt is

Xt =

{
no event with probability 1− (1− at)λ∆

event with probability (1− at)λ∆

for some λ > 0 and vanishingly small ∆. It is evident that the Poisson event itself is
the Bad signal whereas no event is the Good signal. What is the quality of the event
signal of bad news Poisson monitoring? The measure that is of interest to me is the
negative effort-elasticity of Bad signals :(

−dP(Xt ∈ Bad | at)
dat

)
· 1

P(Xt ∈ Bad | at)
. (3)

The first term of this elasticity measures the incentive power of information. It
appears in the first-order condition that pins down A’s best response effort – see
equation (2). The larger is this term, the smaller is the punishment threat needed to
induce a target effort level. What about the second term? In equilibrium, one knows
the effort at that is being exerted by A. Thus, when a Bad signal is realized and
punished, it is as if P is treating the signal as evidence that A did not in fact exert
the effort he was supposed to exert. This constitutes a type II error. In hypothesis
testing, the less likely a type II error occurs, the more statistically powerful is the
test. In my analogy the probability of making a type II error is P(Xt ∈ Bad | at).
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Thus, the second term of the elasticity can be thought of as measuring the statistical
power of information.

When P is considering how much of a punishment threat her contract offer should
feature the basic tradeoff she weighs is, for a given punishment threat, how much effort
will she induce versus how much surplus will be destroyed. The first factor is captured
by my measure of incentive power while the second factor is captured by my measure
of statistical power. Holding one factor fixed, the other factor needs to be sufficiently
attractive for it to be worth it to induce effort. How much is sufficient? It turns out
the answer is given by the negative effort-elasticity of Bad signals, which multiples
my measures of incentive and statistical power.

Formally I will show if the negative effort-elasticity of Bad signals goes to zero
as ∆ tends to zero, then in the continuous time limit the optimal contract does not
induce positive effort. If on the other hand the measure stays bounded away from
zero, then it is possible to parameterize the rest of the model in such a way so that the
optimal contract induces arbitrarily high effort. See Theorem 2 below. Anticipating
this result, I now use the negative effort-elasticity of Bad signals to classify the quality
of the typical Bad signal generated by a monitoring technology in the continuous time
limit.

A simple computation shows that the negative effort-elasticity of Bad signals
under bad news Poisson monitoring is

1

1− at
.

Notice it remains bounded away from zero as ∆ becomes small no matter the effort
level. Thus, bad news Poisson monitoring generates a high quality Bad signal and
the optimal contract under bad news Poisson monitoring can induce positive effort.

Let us now see what happens when the bad news Poisson monitoring technology
is improved by including a conditionally independent Brownian signal Yt where effort
controls the drift:

Yt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

Each date the Brownian signal is a single step of an extremely fine random walk.
Whenever the random walk goes up it is a Good signal, whenever it goes down it is
a Bad signal.

Under the improved monitoring technology, a signal is a vector (Xt, Yt). Obviously
when both components are Bad (Good) the vector is Bad (Good). But what about
the other two cases? Notice, Brownian information has really strong incentive power,
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at least relative to bad new Poisson information:

−dP(Yt = −
√

∆ | at)
dat

=

√
∆

2
� λ∆ = −dP(Xt = event | at)

dat
.

For a fixed punishment threat, the ratio of the marginal benefits of effort induced by
Brownian information versus bad news Poisson information is infinite in the limit.
Thus, intuitively, under the improved monitoring technology P will punish A if the
Brownian component is Bad no matter what is Xt since P cares about maximizing
effort incentives. In fact, a simple application of the product rule shows that for this
particular monitoring technology a vector is Bad if and only if at least one component
signal is Bad.

But now we have a problem. Unfortunately Brownian information, despite its
very strong incentive power, has even weaker statistical power with the Brownian
Bad signal occurring about half the time no matter the effort A exerts. By punishing
A whenever the Brownian component is Bad, P ensures that the extreme weakness
of Brownian statistical power infects the statistical power of the information gener-
ated by the improved monitoring technology. Consequently, despite the considerably
greater incentive power of the improved monitoring technology, the typical Bad vec-
tor has much lower quality than the original Bad signal. In fact, it is not hard to
show that the negative effort-elasticity of Bad vectors is on the order of

√
∆ which

goes to zero as ∆ tends to zero. Thus, when bad news Poisson monitoring is im-
proved by including a Brownian component, the optimal contract collapses into a
trivial arrangement that always pays A a flat wage wsalary and never terminates A. A
best responds by putting in zero effort, and P despite her better monitoring becomes
worse off.

4.2 Incentive Power and Statistical Power

In the example above I showed that including a Brownian component with bad news
Poisson monitoring leads to a worse outcome. I linked this result specifically to the
fact that Brownian information has much greater incentive power but much weaker
statistical power than bad news Poisson information.

I now generalize this result to the universe of binary-valued monitoring technolo-
gies in the continuous time infinite horizon limit: lim∆→0 limT→∞. Starting with a
technology X1, I show that introducing another technology X2 causes the optimal
contract to collapse into a trivial arrangement if, relative to X1, X2 has sufficiently
strong incentive power but sufficiently weak statistical power. A new fact that emerges
from the more general analysis: The condition that X2 must have sufficiently strong
incentive power relative to X1 does not mean X2 must have stronger incentive power
than X1 as in the bad news Poisson-Brownian example. In general, X2’s incentive
power just needs to be above a certain threshold that is increasing in but could be
strictly smaller than the incentive power of X1. See Theorem 3 below.
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I begin by restricting attention to all monitoring technologies in the continuous
time infinite horizon limit satisfying the following regularity conditions: For all at,

lim
∆→0
− d

dat
P(Xt ∈ Bad | at) = Θ(∆α) for some α ≥ 0

lim
∆→0

P(Xt ∈ Bad | at) = Θ(∆γb) for some γb ≥ 0.

lim
∆→0

P(Xt ∈ Good | at > 0) = Θ(∆γg) for some γg ≥ 0.

This class of monitoring technologies includes bad news Poisson monitoring, Brow-
nian monitoring, good news Poisson monitoring:

Xt =

{
event with probability atλ∆

no event with probability 1− atλ∆

as well as vector combinations of these technologies.
Here, α measures the incentive power of information – the lower is α the greater

is the incentive power. γb measure the statistical power of information – the higher
is γb the greater is the statistical power. Thus, α − γb measures the quality of Bad
signals – the lower is α−γb the greater is the negative effort-elasticity and, therefore,
the quality of Bad signals. It is always the case that α ≥ γb.

Theorem 2. Given a monitoring technology, whether or not the optimal contract can
induce positive effort is largely determined by the quality of Bad signals.

Formally, assume α ≤ 1. If α − γb = 0 then depending on how the rest of the
model is parameterized the effort induced by the optimal contract can be made to be
arbitrarily high (i.e. close to 1). Otherwise the optimal contract induces zero effort.

Proof. See appendix.

Theorem 2 implies that in the continuous time infinite horizon limit if the nega-
tive effort-elasticity of Bad signals vanishes then the optimal contract collapses. My
investigation of the better monitoring/worse outcome channel will be built around
finding improvements to monitoring that cause this elasticity to vanish.

Corollary 1. If Xt is Brownian or good news Poisson, the optimal contract induces
zero effort. If Xt is bad news Poisson, there are parameterizations of the model under
which the optimal contract induces nonzero effort.

Corollary 1 matches classic results from the literature on repeated games with
imperfect public monitoring. For example, Abreu, Milgrom, and Pearce (1991) shows
that in a continuous time repeated prisoner’s dilemma game with public monitoring
cooperation can be supported as an equilibrium if monitoring is bad news Poisson but
not good news Poisson. Sannikov and Skrzypacz (2007) shows that in a continuous
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time repeated Cournot oligopoly game with public monitoring collusion cannot be
supported if monitoring is Brownian. This common baseline allows me to better
highlight how my results on the relationship between monitoring and surplus, with
their emphasis on incentive and statistical power, differ from related results in the
repeated games literature. In particular, whereas better monitoring can lead to a
worse outcome in my setting, improvements to the information content of signals
at each date in the models described above always weakly improve the scope for
cooperation.14

Armed with Theorem 2, I can now investigate how improvements to the monitor-
ing technology affect optimality. I begin with a binary-valued monitoring technology
X1 ∈ {b1, g1} with exponents (α1, γ

b
1, γ

g
1). I then improve it by including a condition-

ally independent binary valued monitoring technology X2 ∈ {b2, g2} with exponents
(α2, γ

b
2, γ

g
2). I show that it is generically the case that effort has a strictly monotone ef-

fect on the vector valued information (X1, X2) generated by the improved monitoring
technology. Thus, (X1, X2) also has some associated exponents (α, γb, γg). I derive
the formulas for α, γb, and γg as a function of (α1, γ

b
1, γ

g
1) and (α2, γ

b
2, γ

g
2). Then, by

inverting the formulas and using Theorem 2, I can show, given (α1, γ
b
1, γ

g
1), what kinds

of improvements (α2, γ
b
2, γ

g
2) cause the optimal contract to collapse.

At each date t, (X1t, X2t) can take one of four values: (g1, g2), (g1, b2), (b1, g2), or
(b1, b2). Holding ∆ fixed, P((X1t, X2t) = (g1, g2) | at,∆) is strictly increasing in at
and P((X1t, X2t) = (b1, b2) | at,∆) is strictly decreasing in at. The probability that
(X1t, X2t) = (g1, b2) is P(X1t = g1 | at,∆) · P(X2t = b2 | at,∆). By the product
rule, as ∆ → 0, the derivative of P((X1t, X2t) = (g1, b2) | at,∆) with respect to at
is A(∆) − B(∆) where A(∆) = Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). A sufficient
condition for P((X1t, X2t) = (g1, b2) | at,∆) to be a strictly monotonic function of at
in the continuous-time limit is α1 + γb2 6= γg1 + α2. Similarly, a sufficient condition
for P((X1t, X2t) = (b1, g2) | at,∆) to be a strictly monotonic function of at in the
continuous-time limit is α1 + γg2 6= γb1 + α2. Thus,

Lemma 1. If α1 − α2 6= γg1 − γb2 or γb1 − γ
g
2 then effort has a strictly monotone effect

on (X1t, X2t) as ∆→ 0.

Lemma 2. Given X1t and X2t with exponents (α1, γ
b
1, γ

g
1) and (α2, γ

b
2, γ

g
2), if α1 ≥ α2

then the exponents (a, γb, γg) associated with the vector-valued (X1t, X2t) are

(α = α2, γ
b = min{γb1, γb2}, γg = γg2) if γg1 − γb2 < α1 − α2 < γb1 − γ

g
2

(α = α2, γ
b = γb2, γ

g = min{γg1 , γ
g
2}) if γb1 − γ

g
2 < α1 − α2 < γg1 − γb2

(α = α2, γ
b = γb2, γ

g = γg2) if γg1 − γb2, γb1 − γ
g
2 < α1 − α2

14In a repeated games setting with public monitoring, Kandori (1992) shows that making monitor-
ing more informative in the sense of Blackwell (1950) causes the pure-strategy sequential equilibrium
payoff set to expand in the sense of set inclusion.
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Lemma 2 only considers α1 ≥ α2. The other case, α2 ≥ α1, is implied by symme-
try.

Proof. See appendix.

Lemma 2 yields an explicit characterization of counterproductive improvements
to the monitoring system.

Theorem 3. Improving monitoring by introducing new information that is, relative
to the original information, sufficiently strong in incentive power but sufficiently weak
in statistical power causes the optimal contract to collapse.

Formally, suppose α1 = γb1. If α2 < α1 + γb2 and γb2 < min{γb1, α2}, then α > γb.
The result is tight in the sense that if either of the inequalities is reversed then α = γb.

The inequality α2 < α1 + γb2 of Theorem 3 is the formal expression of what it
means for incentive power to be sufficiently strong. Notice if γb2 is positive then Y
does not need to have stronger incentive power than X to cause the optimal contract
to collapse. Similarly, sufficiently weak in statistical power means γb2 < min{γb1, α2}.
This latter inequality admits a natural interpretation: The statistical power of the
new information needs to be weak enough so that its Bad signal is low quality and
much more common than the Bad signal of the original information. As a corollary,
the better monitoring/worse outcome result described in the previous subsection is
recovered.

Corollary 2. Improving a bad news Poisson monitoring technology by including a
conditionally independent Brownian signal of effort causes the optimal contract to
collapse.

Proof. Let X1 denote bad news Poisson monitoring and X2 denote Brownian moni-
toring. Notice, α2 = 0.5 < 1 + 0 = α1 + γb2 and γb2 = 0 < min{1, 0.5} = min{γb1, α2}.
The corollary now follows from Theorem 3.

4.3 Noisy Information Does Not Mean Weak Incentives

When it comes to the provision of incentives there is a common misconception that
if information is very noisy then incentives cannot be very strong. This confounding
of “informativeness” and incentives likely arises due to the fact that one often works
with parametric families of information structures within which the rankings based
on incentive power and any reasonable measure of informativeness are coincident.

For example, imagine a moral hazard model where an agent can either exert effort
a = 1 or shirk a = 0. a determines the mean of a normally distributed payoff X
with variance σ. In this setting incentive power can be measured by how small of
a punishment threat one can use and still induce effort. The set of payoffs whose
likelihood of occurring decreases when the agent exerts effort is {X ≤ 0.5}. Thus,
statistical power can be measured by P(X ≤ 0.5|a = 1) and the quality of Bad signals
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can be measured by the likelihood ratio P(X ≤ 0.5|a = 0)/P(X ≤ 0.5|a = 1). As
σ decreases, incentive power, statistical power, and the quality of Bad signals all go
up. These improvements can all be traced to the fact that Blackwell informativeness
goes up.

Greater Blackwell informativeness always means greater incentive power. However
Blackwell informativeness is not a complete order and, depending on the situation,
there may be other reasonable ways to compare informativeness across information
structures that either do not agree with Blackwell or apply when Blackwell does
not. For example, in the setting of this paper where, in equilibrium the effort is
known but nevertheless Bad signals are punished as if they indicate a downward
deviation, the quality of Bad signals as measured by negative effort-elasticity is a
natural way to compare informativeness. And it is hard to argue a bad news Poisson
increment that generates a high quality Bad signal is not more informative than a
Brownian increment that generates a very low quality Bad signal even though the two
increments cannot be compared via Blackwell. In this case, the parametric intuition
gets in the way, leading us to be perhaps surprised that Brownian information still
strongly dominates bad news Poisson information in terms of incentive power.

The exploration of the better monitoring/worse outcome channel in this section
helps clarify the distinction between measuring informativeness and measuring incen-
tive power. Theorem 3 and Corollary 2 highlight how information that is at once not
very informative but still very sensitive to effort exists, is not unusual, and can have
an outsized effect on optimal contracting.

That outsized effect is of course negative and it points to a possible danger as
companies increasingly incorporate monitoring technologies that can generate vast
amounts of worker data. Much of this raw data is quite noisy and if this noisy data
also happens to be sensitive to effort, then the better monitoring/worse outcome
channel implies incentives can be compromised.

One possible way to preserve incentives is to have contracts directly condition
worker outcomes (e.g. bonus pay) on the raw data, thereby eliminating the managerial
discretion upon which better monitoring/worse outcome rests. There are, however,
a number of issues that make this difficult to implement in practice. The data may
reveal information that the company is reluctant to make public. The worker may
also be concerned about maintaining his privacy. In industries that are constantly in
flux, it may not be clear ex-ante how to optimally condition contracts on the raw data.
And lastly, as long as the manager still makes reports that affect worker outcomes –
perhaps there is another source of non-contractible information that needs reporting
on – there is no way to prevent the manager from conditioning her reports (that
are supposed to be about that other source of information) on the contractible data
generated by the monitoring technology, in which case, the better monitoring/worse
outcome channel remains open.

A more plausible way to overcome better monitoring/worse outcome may be to
have the technology itself censor the raw data. From this point of view an important
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aspect of the continued development of monitoring technologies is the development
of algorithms that can process the noisy input and turn it into information that
represent better quality signals of performance. As a toy example, imagine the input
is the Brownian random walk considered earlier. One easy way to increase the quality
of Bad signals through data censoring is to let P observe a Bad signal only when the
random walk has gone down multiple times, on the order of 1

∆
.

5 Periodic Performance Appraisal

The better monitoring/worse outcome channel explored in the previous section implies
that limiting the information content of monitoring can be beneficial. How should
information content be limited? One obvious way, if applicable, is to remove a signal
that is strong in incentive power but weak in statistical power. Another possibility
that was discussed is to have a monitoring technology self-censor. In this section I
explore a third way to beneficially limit the information content of monitoring by
limiting when monitoring is allowed to occur.

I consider a canonical setting in which there is a stochastic process tracking cumu-
lative productivity and P monitors by sampling that process. I show how reducing
the frequency of sampling can significantly improve surplus and productivity. When
the frequency of sampling is reduced, so is the information content of monitoring. P
does not observe the kind of detailed day-to-day performance data she would observe
if she sampled frequently. Instead, all she observes are signals of how A has performed
overall since the previous sampling date a while ago. Thus the fact that infrequent
sampling can be beneficial means that appraising a worker’s overall performance ev-
ery once in a while can dominate closely monitoring his day-to-day performance every
single day.

5.1 Information Content or Observation Frequency?

Reducing the frequency of sampling actually changes two things about monitoring
at once: It reduces the information content of monitoring but it also reduces the
frequency at which P observes new information. In the discussion above, I suggest
that it is the first effect that is the source of potential benefits from monitoring
infrequently: Reducing observation frequency is beneficial only because it reduces
information content. But a seminal result of Abreu, Milgrom, and Pearce (1991)
concerns how the second effect by itself can lead to greater efficiency in repeated
games with imperfect monitoring. In that paper the second effect is isolated by
batching the release of information so that, say, every 10 units of time, P observes
the information generated from the past 10 units of time all at once. Batching allows
the information content of monitoring to stay exactly the same while still reducing
the frequency of observation.

20



I now show that batching is counterproductive in my setting where equilibrium
play is determined by the prospect of credible threats. Moreover, as long as the
optimal contract induces nonzero effort, batching is strictly counterproductive.

Releasing information in batches every once in a while is equivalent to releasing
information as it is generated but restricting the players to respond to the flow of
information only every once in a while. Unlike the repeated games literature where
the game is taken as given, P and A in my model are doing optimal contracting and
can choose the structure of the contract game. In particular, they can choose to use
a contract game that only allows P to react to the flow of information every once in a
while: For example, the contract game could be structured so that the message space
is a singleton between t1 and t2 − ∆. In this case, P does not have a rich enough
message space to react to new information between t1 and t2−∆ and it is equivalent
to batching the information generated between t1 and t2 and releasing it all at once
at date t2. Since Theorem 2 is a result about optimal contracting, contract games
that allow P to react to new information only every once in a while are already folded
into the analysis. Thus, my optimality result indirectly implies that batching cannot
increase surplus.

In fact, choosing a contract game that allows P to react to new information only
every once in a while is not only not helpful, it is usually strictly hurtful. Suppose
the contract game does not allow P to react to new information between t1 and
t2 − ∆. On date t2 when P finally has the opportunity to affect A’s continuation
payoff through her reports, all of A’s efforts before date t2 have been sunk. The
credible threats refinement implies that P ’s goal standing at the beginning of date t2
is to choose a date t2 report strategy that maximizes date t2 effort incentives. This
means P will report in a way so that A’s date t2 +∆ continuation payoff is maximized
(minimized) depending only on if Xt2 ∈ Good (∈ Bad). In particular, P ignores all
signals generated before date t2. Anticipating this, A best responds by exerting zero
effort from t1 to t2 −∆.

5.2 Optimal Sampling Frequency: Efficiency versus Capacity

To explore the costs and benefits of infrequent sampling, I now consider a canonical
setting where effort controls the drift of a Brownian motion and P monitors by sam-
pling the Brownian motion. Such a model can be adapted from the original model as
follows:

The timing is the same as before: t = 0,∆, . . . T . The sequence of events within
each date t is the same as before except P may or may not monitor A. If P does
monitor A at date t, then she samples the current value Zt of the Brownian process:

Zt =
t∑
i=0

ai∆ +Bt

21



where Bt is standard Brownian motion. In addition, P reports a public message
mt ∈Mt and a public randomizing device is realized just like before. The model then
moves to the next date t + ∆. If P does not monitor, then the model immediately
moves to t+ ∆ after A exerts date t effort.

A contract game in addition to specifyingM, w, and τ also specifies a predictable
sequence of sampling times e1 < e2 < . . . < T . Continuation payoffs can be defined
exactly as before at every date, including non-sampling dates. The credible threats
refinement admits a natural generalization. Contracts and the optimal contracting
problem are defined exactly as before. I am interested in studying the properties of
the optimal contract in the continuous time infinite horizon limit.

Lemma 3. The optimal contract features a deterministic sequence of sampling times.
There exist a D∗ such that as ∆→ 0 and T →∞, the optimal contract’s sequence of
sampling times converges to the sequence {D∗, 2D∗, 3D∗ . . .}.

Given Lemma 3 characterizing the optimal contract in the continuous time infinite
horizon limit can be broken down into two steps: First, characterize the optimal
contract in the continuous time infinite horizon limit given a fixed sampling frequency
1
D

. Then, find the optimal sampling frequency 1
D∗

.

Theorem 4. Fix a sampling frequency 1
D

. There exist ρ∗(D) and p∗(D) such that
the optimal contract given sampling frequency 1

D
has the following structure:

• For each k ∈ Z+, MkD = {pass, fail}.

• mkD = fail iff ZkD − Z(k−1)D ≤ ρ∗(D).

• w consists of a pair of constants wsalary(D)dt, wseverance(D).

• If mkD = pass then A is retained for the sampling period (kD, (k+ 1)D] and is
paid a stream wsalary(D)dt.

• If mkD = fail then A is terminated with probability p∗(D).

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid a lump sum wseverance(D).

The credible threats refinement implies that at each date kD the report depends
only on ZkD − Z(k−1)D. ZkD − Z(k−1)D is not monotone with respect to effort but it
does satisfy MLRP with respect to effort. In the proof I show that as a consequence
of MLRP P ’s effort maximizing report strategy involves setting a threshold ρ∗(D)
and endogenously splitting the range of ZkD − Z(k−1)D into the “Bad” signals below
ρ∗(D) and the “Good” signals above ρ∗(D). Once this result is established, the rest
of the proof closely follows that of Theorem 1. The resulting continuous time optimal
contract can be viewed as equivalent to the original discrete time optimal contract
except the exogenously fixed date length ∆ is now replaced with a to-be-endogenously-
determined optimal sampling period length D∗:
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Theorem 5. There exists an optimal sampling frequency 1
D∗
∈ (0,∞). As sampling

frequency converges to infinity or zero effort induced by the optimal contract given the
sampling frequency decreases to zero.

Given that P ’s report strategy identifies endogenous Good and Bad signals, the
statistical power of ZkD − Z(k−1)D can be defined similar to before based on the
probability of Bad signals occurring. This then allows me to use the negative effort-
elasticity of Bad signals to measure the quality of Bad signals. As sampling frequency
increases, the quality of Bad signals worsens. Theorem 2 can be easily adapted to
then show that in the continuous sampling limit the optimal contract must induce
zero effort. As sampling frequency decreases, the quality of Bad signals continues to
improve. If there were no discounting, P ’s flow payoff would increase to the first-best
level as sampling frequency decreases to zero. However, since there is discounting,
as the length of a sampling period increases discounting begins eroding the capacity
to provide incentives: In the beginning of a long sampling period, the threat of
termination – which is bounded by the size of the continuation surplus – in the
distant future when the period concludes has little effect on the continuation payoff
of A today. Thus, as sampling frequency goes to zero, the optimal contract again
induces zero effort. Since the quality of Bad signals determines how efficient it is to
provide incentives, the optimal sampling frequency can be viewed as balancing the
efficiency versus the capacity of incentive provision.

One concern about maintaining an infrequent sampling of performance is whether
or not the act of sampling itself is verifiable. My model assumes implicitly that
the principal cannot sample outside of the specified sampling dates. If the principal
could sample outside of the specified sampling dates then he would want to sample
constantly. Anticipating this deviation, the contracting parties would then optimally
agree to a trivial contract. Thus, my analysis suggests that it is important to force
the principal to go through formal channels in order to appraise worker performance.
Another interpretation is that my analysis suggests a benefit to making appraising
performance sufficiently costly to P . This way while it can still be verified if P has
conducted a formal performance appraisal when the contract calls for it, there is less
fear that P will conduct an unwarranted informal performance appraisal at some
other date.

5.3 Development versus Accountability

“Performance management’s purpose is shifting, structurally and dramatically. With
blurring lines between performance management and talent development, executives
will have to consider how to balance the assessment of past performance with the
ongoing need to develop employee skills. The professional development function —
emphasizing performance improvement, coaching, and feedback — often receives short
shrift.” (Schrage et al, 2019)
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“The tension between the traditional and newer approaches stems from a long-running
dispute about managing people: Do you “get what you get” when you hire your em-
ployees? Should you focus mainly on motivating the strong ones with money and
getting rid of the weak ones? Or are employees malleable? Can you change the way
they perform through effective coaching and management and intrinsic rewards such
as personal growth and a sense of progress on the job? With traditional appraisals,
the pendulum had swung too far toward the former.” (Cappelli and Tavis, 2016)

“Ultimately, we need to accomplish three things: review contributions, reward ac-
complishments, and give and receive feedback. Do they need to be conflated into a
cumbersome process? Under our new system, our contributors get highly specific per-
formance feedback at least once every six weeks. But in practice it happens every week.
Instead of lagging, the performance management process is leading. The true mecha-
nisms for success are the ones that build capabilities.” (Donna Morris, Chief Human
Resources Officer at Adobe, an early adopter of continuous performance management
practices. See Doerr, 2018.)

The rise of continuous performance management (CPM) practices has been driven
by the need for greater worker development in an increasingly dynamic world where,
to quote Schrage et al (2019), “the half-life of skills is going to get shorter.” Making
performance appraisals more frequent obviously makes it easier for managers to help
workers continually identify and develop new skills needed to adapt to a changing
environment. What is less obvious is how such a change might impact incentive
provision. Cappelli and Tavis (2016) notes that “companies changing their systems
are trying to figure out how their new practices will affect the pay-for-performance
model.” Steffen Maier, cofounder of Impraise – a company that helps clients imple-
ment CPM – has pointed to a general apprehension about how these new practices,
which often involve nuanced, ratingless feedback, might lead to less transparency and
more bias in compensation decisions (Caprino, 2016).

What the better monitoring/worse outcome channel does is clarify an explicit
downside for incentive provision when performance appraisals become more frequent
and tie it specifically to the principal’s making discretionary reports about agent per-
formance. At the same time, my exploration of the better monitoring/worse outcome
channel also yields strategies for potentially overcoming that downside.

Since the discretionary nature of principal reports is a key reason why better mon-
itoring can lead to a worse outcome, one strategy for preventing CPM from negatively
affecting incentive provision is to make the feedback less discretionary. Companies
have attempted to do this through eliciting feedback from multiples sources (e.g. cal-
ibration meetings between managers, peer-based feedback) and by making feedback
be about team performance which can be measured more objectively than individual
performance (Caprino, 2016). Ledford, Benson, and Lawler (2016), in their study
of ongoing, ratingless, and crowdsourced feedback, finds that “the most effective

24



patterns . . . for meeting rewards system objectives are the use of all three practices
together and/or ongoing feedback plus crowdsourced feedback.”

Another potential strategy for overcoming the downside of frequent performance
appraisals is to complement those frequent appraisals with a separate infrequent ap-
praisal of performance reserved for incentive provision. While some companies have
eliminated annual performance reviews entirely, most practitioners of CPM still keep
one annual review specifically for making compensation decisions (Caprino, 2016).
For example, Patagonia still maintains a formal review that provides “an annual
reckoning” to help determine compensation and bonuses (Ramirez, 2018).

One concern about such a hybrid arrangement is whether or not the two modes
of performance appraisals interfere with each other. As Cappelli and Tavis (2016)
point out, “It will be interesting to see whether most supervisors end up reviewing the
feedback they’ve given each employee over the year before determining merit increases.
And could that subtly undermine development by shifting managers’ focus back to
accountability?” My analysis of batching in Section 5.1 highlights a potential pitfall
of trying to hold workers accountable periodically while monitoring continuously.
If the periodic appraisal of past performance that determines worker incentives is
simply a review of past continuous appraisals then introducing the periodic appraisal
is counterproductive.

Instead, continuous and periodic appraisal should be focused on gathering dif-
ferent types of information to serve the competing demands of development versus
accountability. The idea of splitting appraisals into ones focused on development
and on accountability has been around for decades. “After running a well-publicized
experiment in 1964, General Electric concluded it was best to split the appraisal
process into separate discussions about accountability and development, given the
conflicts between them. Other companies followed suit.” (Cappelli and Tavis, 2016).
The better monitoring/worse outcome channel provides guidance for how to success-
fully implement such a split through continuous and periodic performance appraisals.
The development oriented continuous appraisal could focus on corrective feedback
by gathering information about what actions the worker should and should not take
rather than how much effort workers are putting into a certain action. The account-
ability oriented periodic appraisal could then focus on gathering information about
how successful were the worker’s actions overall across the entirety of the appraisal
period.

Of course the boundary between development-relevant and accountability-relevant
information may not be clear cut. Indeed, figuring out which new actions need to
be taken probably involves monitoring the success of previous actions. As companies
continue to rethink their monitoring systems to better serve worker development, an
important open question is how to do this in a way that minimizes any negative
impact on holding workers accountable. My work contributes to a better understand-
ing of this fundamental problem of monitoring design by highlighting a potentially
significant cost to incentive provision that the use of CPM can entail.
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6 Conclusion

In this paper I considered a principal-agent model with moral hazard and highlighted
a better monitoring/worse outcome channel when information generated by monitor-
ing is non-contractible and must pass through the principal’s discretionary reports
in order to affect the agent’s payoff. Allowing the principal to observe additional in-
formation that is, relative to the original information, sufficiently strong in incentive
power but sufficiently weak in statistical power can lead to an optimal contract that
induces lower effort and generates less surplus. Such improvements to monitoring
tempt the principal to make too many negative reports leading to overpunishment
of the agent. The agent then responds by refusing to accept contracts with strong
punishment threats. Without a strong punishment threat, incentive provision is hin-
dered, leading to lower effort and less surplus. The better monitoring/worse outcome
result implies that limiting the information content of monitoring can be beneficial.
I explored a number of ways to do this including data-censoring and reducing the
frequency of monitoring.

7 Appendix

Proof of Theorem 1. Based on Zhu (2018), I take as given that for any contract
game (M, w, τ) the credible threats refinement selects the set of sequential equilibria
E∗(M, w, τ) – the credible threats equilibria – constructed as follows:

Let ξt denote the public randomizing device realized at the end of date t. For every
public history of the form hT−∆, define (W ∗

T (hT−∆), V ∗T (hT−∆)) = (wT (hT−∆),−wT (hT−∆)).
Fix a t < T and suppose by backwards induction a unique continuation payoff
process (W ∗

s+∆(hs), V
∗
s+∆(hs)) has been constructed for all hs where t ≤ s < T .

Given a public history ht−∆, if τ(ht−∆) = t then define (W ∗
t (ht−∆), V ∗t (ht−∆)) =

(wt(ht−∆),−wt(ht−∆)). Otherwise, define

M∗
t (ht−∆) = arg max

mt∈Mt(ht−∆)

EξtV
∗
t+∆(ht−∆mtξt)

V max
t+∆ (ht−∆) = max

mt∈Mt(ht−∆)
EξtV

∗
t+∆(ht−∆mtξt)

W pass
t+∆ (ht−∆) = max

mt∈M∗t (ht−∆)
EξtW

∗
t+∆(ht−∆mtξt)

W fail
t+∆(ht−∆) = min

mt∈M∗t (ht−∆)
EξtW

∗
t+∆(ht−∆mtξt)
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a∗t (ht−∆) = max

{
arg max
at∈[0,1)

−h(at)∆− e−r∆P(Xt ∈ Bad | at)(W pass
t+∆ (ht−∆)−W fail

t+∆(ht−∆))

}

W ∗
t (ht−∆) = (wt(ht−∆)− h(a∗t (ht−∆)))∆

+ e−r∆
[
W pass
t+∆ (ht−∆)−P(Xt ∈ Bad | a∗t (ht−∆))(W pass

t+∆ (ht−∆)−W fail
t+∆(ht−∆))

]

V ∗t (ht−∆) = (u(a∗t (ht−∆))− wt(ht−∆))∆ + e−r∆V max
t+∆ (ht−∆)

a∗t (ht−∆) is well-defined because the expression inside the arg max is continuous
and has a maximum. By induction, I have now constructed a unique continuation
payoff process (W ∗

t (ht−∆), V ∗t (ht−∆)) for all t and ht−∆. I refer to this process as
the continuation payoff process of (M, w, τ) and (W ∗

0 , V
∗

0 ) as the ex-ante payoff of
(M, w, τ)

Fix any strategy profile (a,m) satisfying

at(H
A
t−∆, ht−∆) = a∗t (ht−∆)

mt(H
P
t , ht−∆) ∈M∗

t (ht−∆)

EξtW
∗
t+∆(ht−∆mt(H

P
t , ht−∆)ξt) = W pass

t+∆ (ht−∆) if Xt ∈ Good
EξtW

∗
t+∆(ht−∆mt(H

P
t , ht−∆)ξt) = W fail

t+∆(ht−∆) if Xt ∈ Bad

for all t and ht−∆. There exists an assessment with such a strategy profile that is a
sequential equilibrium. All such sequential equilibria generate the continuation payoff
process of (M, w, τ). E∗(M, w, τ) is defined to be this set of sequential equilibria.
An element of this set is called a credible-threats equilibrium.

I claim given a contract game (M, w, τ), there exists another contract game with
the same ex-ante payoff and with the property that the message space is {pass, fail}
at all times. To construct this other contract game, first note that there exists an
element (a,m) ∈ E∗(M, w, τ) with the property that for all ht−∆, HP

t−∆, and x1, x2 ∈
Im(Xt), mt(H

P
t−∆x1, ht−∆) = mt(H

P
t−∆x2, ht−∆) if x1, x2 ∈ Good or x1, x2 ∈ Bad.

By definition, (a,m) generates ex-ante payoff (W ∗
0 , V

∗
0 ). Now remove all the edges

and vertices of (M, w, τ) that are not reached by (a,m). Call the resulting game
(M′′, w′′, τ ′′). (a,m) also ∈ E∗(M′′, w′′, τ ′′) and clearly still generates ex-ante payoff
(W ∗

0 , V
∗

0 ). (M′′, w′′, τ ′′) has the property that the message space has at most two
elements for each t and ht−∆. Pick any ht−∆ in (M′′, w′′, τ ′′). If |M′′

t (ht−∆)| = 2
then by definition of (a,m) one of the messages is the one that is always reported
under (a,m) if Xt ∈ Good and the other is the message that is always reported under
(a,m) if Xt ∈ Bad. Relabel the Good message pass and the Bad message fail. If
|M′′

t (ht−∆)| = 1 then split the message into two messages, pass and fail, and attach
copies of the continuation game following the original message after both the pass
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and the fail messages. This altered game, call it (M′, w′, τ ′), has the property that
the message space is {pass, fail} after all histories. Moreover, it is clear the ex-ante
payoff of (M′, w′, τ ′) is (W ∗

0 , V
∗

0 ). Thus, the claim is proved.
From now on, I assume without loss of generality that in a contract game the

message space at all times is {pass, fail} and there is a credible threats equilibrium
with the property that mt = pass iff Xt ∈ Good.

Suppose by induction there exists an optimal contract game in the T -model with
the following properties: For all t < T , there exist numbers wsalary,t∆, wseverance,t+∆, p

∗
t+∆

such that

• If mt = pass then A is retained for date t+ ∆ and paid wsalary,t∆.

• If mt = fail then A is terminated at date t+ ∆ with probability p∗t+∆.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid wseverance,t+∆.

• W ∗
t+∆(ht−∆passξt) = 0 for all ht−∆ and ξt, and W ∗

0 = 0.

The existence of such an optimal contract game is trivially true when T = 0. For
general T , the ex-ante payoff of this contract game is (W ∗

0 = 0, V ∗0 = S∗T ) where S∗T
is the Pareto-optimal surplus in the T -model.

Now fix an optimal contract game (M, w, τ) in the T + ∆-model. Consider the
subgame (M, w, τ)|passξ0 following the date 0 pass report and a realization of ξ0. It
can be identified with a contract game in the T -model. Replace every (M, w, τ)|passξ0

with the same optimal contract game C in the T -model with the properties described
above. Next, change the portion of (M, w, τ) following the date 0 fail report to a
randomization between C and termination with severance pay wseverance,∆ = −S∗T
where the randomization is based on ξ0 and is structured so that A’s expected date ∆
payoff equals −(W pass

∆ −W fail
∆ ). Finally shift w0 so that A’s ex-ante payoff remains 0.

The modified contract game’s continuation payoff process continues to satisfy ex-ante
and ex-interim participation constraints and delivers a weakly larger ex-ante payoff
to P compared to (M, w, τ). Thus, it is also an optimal contract game. Moreover, it
has the same structure that I am trying to prove by induction. This completes the
induction.

Fix an optimal contract game (M, w, τ) in the T + ∆-model with the structure
described above and consider the subgame (M, w, τ)|passξ0 which does not depend
on ξ0. This subgame, by construction, is an optimal contract game in the T -model.
Now take T → ∞. By self-similarity (M, w, τ)|passξ0 and (M, w, τ) generate the
same ex-ante payoffs. Thus, one can replace (M, w, τ)|passξ0 with (M, w, τ) itself.
By doing this repeatedly across all dates, the resulting optimal contract game in the
infinite horizon limit has the stationary structure described in the Theorem.
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Proof of Theorem 2. Let a∗t (∆) denote the limiting effort induced by the optimal
contract at date t as T → ∞ holding fixed ∆ > 0. Suppose lim∆→0 a

∗
t (∆) > 0.

Since A is exerting an interior effort, the first-order condition equating marginal cost,
h′(a∗t (∆))∆, to marginal benefit,(

− d

dat
P(Xt ∈ Bad | at,∆)|at=a∗t (∆))

)
· p∗(∆) · e−r∆S∗(∆),

must hold. Since marginal cost = Θ(∆), therefore marginal benefit = Θ(∆). Since
e−r∆S∗(∆) = Θ(∆0) and, by assumption, − d

da
P(Xt ∈ Bad | at,∆)|a1=a∗t (∆)) = Θ(∆α),

therefore p∗(∆) = Θ(∆1−α).
The contribution to surplus of a∗t (∆) relative to zero effort is = Θ(∆). The cost to

surplus of p∗(∆) relative to zero probability of termination is P(Xt ∈ Bad | a∗t (∆),∆)·
p∗(∆) = Θ(∆γb+(1−α)). For the contributions to exceed the costs it must be that
γb + 1− α ≥ 1⇒ α − γb ≤ 0⇒ α − γb = 0. Feasibility of p∗(∆) = Θ(∆1−α) implies
α ≤ 1.

Proof of Lemma 2. Case 1a: γg1 − γb2 < α1 − α2 = 0 < γb1 − γ
g
2 .

It is easy to show γg1 = γg2 = 0. By the product rule, as ∆ → 0, the deriva-
tive of P(Xt = (g1, b2) | at,∆) with respect to at is A(∆) − B(∆) where A(∆) =
Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). Since α1 + γb2 > γg1 + α2, B(∆) � A(∆)
and therefore (g1, b2) ∈ Bad. By the product rule, as ∆ → 0, the derivative of
P(Xt = (b1, g2) | at,∆) with respect to at is −A(∆)+B(∆) where A(∆) = Θ(∆α1+γg2 )
and B(∆) = Θ(∆γb1+α2). Since α1 + γg2 < γb1 + α2, A(∆) � B(∆) and therefore
(b1, g2) ∈ Bad.

Given the results above, γb = min{γb1 + γb2, γ
g
1 + γb2, γ

b
1 + γg2} = min{γb1, γb2}.

γg = γg1 + γg1 = 0. α = min{α1 + γg2 , γ
g
1 + α2} = α1 = α2.

Case 1b: γg1 − γb2 ≤ 0 < α1 − α2 < γb1 − γ
g
2 .

γg1 = 0, γb1 > 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Bad. γb = min{γb1+γb2, γ
g
1 +γb2, γ

b
1+γg2} =

min{γb1 + γg2 , γ
b
2} = min{γb1, γb2}. γg = γg2 . α = min{α1 + γg2 , γ

g
1 + α2} = α2.

Case 2: γb1 − γ
g
2 ≤ 0 < α1 − α2 < γg1 − γb2.

γb1 = 0, γg1 > 0. (g1, b2) ∈ Good, (b1, g2) ∈ Good. γb = γb2. γg = min{γg1 + γg2 , γ
g
1 +

γb2, γ
b
1 + γg2} = min{γg1 + γb2, γ

g
2} = min{γg1 , γ

g
2}. α = min{α1 + γb2, γ

b
1 + α2} = α2.

Case 3a: γg1 − γb2 ≤ 0 ≤ γb1 − γ
g
2 < α1 − α2.

γg1 = 0 or γg2 = γb1 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1 + γb2, γ
g
1 +

γb2} = γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.

Case 3b: γb1 − γ
g
2 ≤ 0 ≤ γg1 − γb2 < α1 − α2.

γb1 = 0 or γg1 = γb2 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1+γb2, γ
g
1+γb2} =

γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.
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Definition. Fix a function H : [0, 1)→ [0,∞) with H(0) = H ′(0) = 0, H ′′ > 0, and
lima→1H(a) = ∞. Let FW denote the set of measurable functions f : (−∞,∞) →
[0,W ]. Given ρ ∈ [−∞,∞], define 1ρ to be the function that is 0 on (−∞, ρ] and 1 on
(ρ,∞). Let N(a, σ2) denote a normal random variable with mean a and variance σ2.
Given f ∈ FW and a differentiable strictly increasing function g : [0, 1) → (−∞,∞)
define A(H, f, g, σ2) to be the set

arg max
a∈[0,1)

Ef(N(g(a), σ2))−H(a).

For each x ∈ R, define Φρ,σ2(x) := P(N(x, σ2) ≥ ρ).

Lemma 4. There exists a pair ρ(H,W, g, σ2) and a(H,W, g, σ2) ∈ a(H,W1ρ(H,W,g,σ2), g, σ
2)

such that there does not exist an f ∈ FW with nonempty A(H, f, g, σ2) and an ele-
ment a′ ∈ A(H, f, g, σ2) such that a′ > a(H,W, g, σ2). If W > 0, ρ(H,W, g, σ2) and
a(H,W, g, σ2) are unique and ρ(H,W, g, σ2) ∈ [g(0), g(a(H,W, g, σ2))].

Proof. Fix H, f , g, and σ2 with non-empty A(H, f, g, σ2). Since A(H, f, g, σ2) is
compact, let a′ be the maximum element. Let ρ′ ∈ R satisfy

EW1ρ′(N(g(a′), σ2) = Ef(N(g(a′), σ2)).

By construction, we have a < a′ ⇒ EW1ρ′(N(g(a), σ2) ≤ Ef(N(g(a), σ2)) and a >
a′ ⇒ EW1ρ′(N(g(a), σ2) ≥ Ef(N(g(a), σ2)). Thus, A(H,W1ρ′ , g, σ

2), which is non-
empty, has an element that is weakly larger than a′.

Now consider the set of a such that there exists a ρ satisfying a ∈ A(H,W1ρ, g, σ
2).

This is a closed set: Let a∞ be the limit of a sequence {an} in this set. To each an, I
can associate a threshold ρn such that an ∈ A(H,W1ρn , g, σ

2). There is a convergent
subsequence in the compact set [−∞,∞] with limit ρ∞. a∞ ∈ A(H,W1ρ∞ , g, α

2).
Thus, there exists a maximum element a∗ with associated threshold ρ∗. a∗ is the
largest element of A(H,W1ρ∗ , g, σ

2). This proves existence.
To prove uniqueness, assume W > 0. Suppose ρ∗ < g(0). Then Φ′g(0),σ2(x) >

Φ′ρ∗,σ2(x) for all x ≥ g(0). Thus, A(H,W1g(0), g, σ
2) has an element > a∗. Contradic-

tion.
Suppose ρ∗ > g(a∗). SinceW > 0, it must be that a∗ > 0 andWΦ′ρ∗,σ2(g(a∗))g′(a∗) =

H ′(a∗). Now consider the function Φg(a∗),σ2 . By construction, WΦ′g(a∗),σ2(g(a∗))g′(a∗) >

H ′(a∗). Moreover, Φ′g(a∗),σ2(x) > Φ′ρ∗,σ2(x) for all x ≤ g(a∗). Thus,A(H,W1g(a∗), g, σ
2)

has an element x > a∗. Contradiction. Thus, ρ∗ ∈ [g(0), g(a∗)]. Suppose there were
two such thresholds ρ∗1 6= ρ∗2. We then have Φ′ρ∗1,σ2(g(a∗)) = Φ′ρ∗2,σ2(g(a∗)). Since

ρ∗1 6= ρ∗2 and Φρ,σ2 is logistic shaped with inflection point equal to ρ, it must be that
max{ρ∗1, ρ∗2} > g(a∗). Contradiction.

Definition. Fix a D > 0 divisible by ∆ and an a ∈ [0, 1). For t = 0,∆, 2∆ . . . let
a(t) denote the unique effort level satisfying e−rth′(a(t)) = h′(a). Define HD(a) =∑D−∆

t=0 e−rth(a(t))∆ and aD =
∑D−∆

t=0 a(t)∆.
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Proof of Lemma 3 and Theorem 4. The proof relies on Lemma 4 and the two defini-
tions above.

Based on Zhu (2018) and Lemma 4, I take as given that for any contract game
(M, w, τ, e) the credible threats refinement selects the set of sequential equilibria
E∗(M, w, τ, e) – the credible threats equilibria – constructed as follows:

Since sampling dates are predictable, the end of each sampling period is known
at the beginning of that period. In particular, given a sampling date t it is known at
the end of date t if this was the final sampling or not. Fix a final sampling date ek
for some k. The termination date is then measurable with respect to hek since there
are no more messages or public randomizing devices after date ek. Define

W ∗
ek+∆(hek) =

τ(hek )−∆∑
t=ek+∆

e−r(t−ek−∆)wt(hek)∆

+ e−r(τ(hek )−ek−∆)wτ(hek ).

and V ∗ek+∆(hek) :=
(∑τ(hek )−∆

t=ek+∆ e−r(t−ek−∆)u(0)∆
)
−W ∗

ek+∆(hek). Next, fix a non-final

sampling date ek for some k. Define

M∗
ek+1

(hek) = arg max
mek+1

∈Mek+1
(hek )

Eξek+1
V ∗ek+1+∆(hekmek+1

ξek+1
)

V max
ek+1+∆(hek) = max

mek+1
∈Mek+1

(hek )
Eξek+1

V ∗ek+1+∆(hekmek+1
ξek+1

)

W pass
ek+1+∆(hek) = max

mek+1
∈M∗ek+1

(hek )
Eξek+1

W ∗
ek+1+∆(hekmek+1

ξek+1
)

W fail
ek+1+∆(hek) = min

mek+1
∈M∗ek+1

(hek )
Eξek+1

W ∗
ek+1+∆(hekmek+1

ξek+1
)

a∗(hek) = max

{
arg max
a∈[0,1)

−Hek+1−ek(a)− e−r(ek+1−ek) ·P
(
N(aek+1−ek , ek+1 − ek) ≤

ρ(Hek+1−ek , e−r(ek+1−ek)(W pass
ek+1+∆(hek)−W fail

ek+1+∆(hek)), aek+1−ek , ek+1 − ek)
)
·

(W pass
ek+1+∆(hek)−W fail

ek+1+∆(hek))

}
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W ∗
ek+∆(hek) =

ek+1∑
t=ek+∆

(wt(hek)− h(a∗(hek)(t− ek −∆)))∆+

e−r(ek+1−ek)

[
W pass
ek+1+∆(hek)−P

(
N(aek+1−ek , ek+1 − ek) ≤

ρ(Hek+1−ek , e−r(ek+1−ek)(W pass
ek+1+∆(hek)−W fail

ek+1+∆(hek)), aek+1−ek , ek+1 − ek)
)
·

(W pass
ek+1+∆(hek)−W fail

ek+1+∆(hek))

]

V ∗ek+∆(hek) =

ek+1∑
t=ek+∆

(u(a∗(hek)(t− ek −∆))− wt(hek))∆ + e−r(ek+1−ek)V max
ek+1+∆(hek)

By defining e0 = −∆, one can also define (W ∗
0 , V

∗
0 ) in the same way as above.

By induction, I have now constructed a unique continuation payoff process

(W ∗
ek+∆(hek), V ∗ek+∆(hek))

across all sampling dates ek and corresponding histories hek . I refer to this process as
the continuation payoff process of (M, w, τ, e) and (W ∗

0 , V
∗

0 ) as the ex-ante payoff of
(M, w, τ, e).

Fix any strategy profile (a,m) satisfying

at(H
A
t−∆, ht−∆) = a∗(hek)(t− ek −∆) for all ek < t ≤ ek+1

mek+1
(HP

ek+1
, hek) ∈M∗

ek+1
(hek)

Eξek+1
W ∗
ek+1+∆(hekmek+1

(HP
ek+1

, hek)ξek+1
) = W pass

ek+1+∆(hek) if Xt ∈ Good

Eξek+1
W ∗
ek+1+∆(hekmek+1

(HP
ek+1

, hek)ξek+1
) = W fail

ek+1+∆(hek) if Xt ∈ Bad

for all t, ht−∆ and sampling dates ek+1 with corresponding histories hek+1
. There

exists an assessment with such a strategy profile that is a sequential equilibrium.
All such sequential equilibria generate the continuation payoff process of (M, w, τ, e).
E∗(M, w, τ, e) is defined to be this set of sequential equilibria. An element of this set
is called a credible-threats equilibrium.

Recycling the proof of Theorem 1, it is without loss of generality to assume in a
contract game each message spaceMek+1

(hek) = {pass, fail} and there is a credible
threats equilibrium with the property that mek+1

(HP
ek+1

, hek) = pass iff Zek+1
−Zek >

ρ(Hek+1−ek , e−r(ek+1−ek)(W pass
ek+1+∆(hek)−W fail

ek+1+∆(hek)), aek+1−ek , ek+1 − ek).
Suppose by induction Lemma 3 is true for all models of length ≤ T . Consider the
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T + ∆-model. Fix a contract game (M, w, τ, e) and define

z ∈ arg max
z′∈Im(ξe1 )

W ∗
e1+∆(pass z′) + V ∗e1+∆(pass z′).

Change the contract game as follows: Replace the subgame following pass z′ with
the one following pass z for all z′ ∈ Im(ξe1). Replace the subgame following fail
with the randomization between the one following pass z and termination with
we1+∆ = −V ∗e1+∆(pass z) calibrated so that A’s expected payoff is W ∗

e1+∆(pass z) −
(W pass

e1+∆ −W fail
e1+∆). Under this sequence of changes, the difference between A’s ex-

pected payoff following pass and fail does not change. Thus the ex-ante surplus
weakly increases. Finally shift w between dates 0 and e1 so that A’s ex-ante pay-
off remains W ∗

0 . This contract game’s ex-ante payoff weakly Pareto-dominates the
original game’s ex-ante payoff. By construction, it has a deterministic e1 and all sub-
sequent sampling dates do not depend on me1 and ξe1 . By induction, all subsequent
sampling dates do not depend on messages or public randomizations after e1. Thus,
the contract has a deterministic sequence of sampling dates. The self-similarity of
the infinite horizon limit means that there is a sequence of optimal contract games
such that the deterministic sequence of sampling times converges to an evenly spaced
sequence as T →∞. It is straightforward to show that this even spacing must have
a convergent subsequence as ∆→ 0.

Proof of Theorem 5. By Lemma 4 and the characterization of credible threats equi-
libria, the optimal contract game’s threshold ρ(D) is always between 0 and D.
As D → 0, P(N(aD, D) < ρ) → 0.5 for any a ∈ [0, 1) and ρ ∈ [0, D). Thus,
P(ZkD − Z(k−1)D ≤ ρ∗(∆) | a∗(∆)) = Θ(1) as ∆ → 0 where a∗(∆) is the effort
sequence induced within a sampling period of the optimal contract given sampling
frequency 1

∆
. This implies that the negative effort-elasticity of Bad signals goes to

zero as ∆ → 0. Now by Theorem 2 the effort induced by the optimal contract goes
to zero as ∆→ 0.
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